The realization space is [1 1 0 x1^2 0 1 1 0 x1^2 1 x1] [0 1 1 x1^3 - 2*x1^2 + 3*x1 - 1 0 0 1 x1 x1^3 - 2*x1^2 + 3*x1 - 1 x1 x1^2] [0 0 0 0 1 1 1 -x1 + 1 -x1^3 + 3*x1^2 - x1 -x1 + 1 -x1^2 + 3*x1 - 1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (4*x1^12 - 30*x1^11 + 94*x1^10 - 166*x1^9 + 181*x1^8 - 123*x1^7 + 50*x1^6 - 11*x1^5 + x1^4) avoiding the zero loci of the polynomials RingElem[2*x1 - 1, x1, x1 - 1, x1^2 - 3*x1 + 1, x1^4 - 5*x1^3 + 6*x1^2 - 4*x1 + 1, x1^5 - 5*x1^4 + 8*x1^3 - 9*x1^2 + 5*x1 - 1, x1^3 - 2*x1^2 + 3*x1 - 1, x1^3 - 5*x1^2 + 4*x1 - 1, x1^2 - x1 + 1]